218 research outputs found

    Driver Acceptance of Advanced Driver Assistance Systems and Semi-Autonomous Driving Systems

    Get PDF
    Advanced Driver Assistance Systems (ADAS) and semi-autonomous driving systems are intended to enhance driver performance and improve transportation safety. The potential benefits of these technologies, such as reduction in number of crashes, enhancing driver comfort or convenience, decreasing environmental impact, etc., are well accepted and endorsed by transportation safety researchers and federal transportation agencies. Even though these systems afford safety advantages, they challenge the traditional role of drivers in operating vehicles. Driver acceptance, therefore, is essential for the implementation of ADAS and semi-autonomous driving systems into the transportation system. These technologies will not achieve their potential if drivers do not accept them and use them in a sustainable and appropriate manner. The potential benefits of these in-vehicle assistive systems presents a strong need for research. A comprehensive review of current literature on the definitions of acceptance, acceptance modelling approaches, and assessment techniques was carried out to explore and summarize the different approaches adopted by previous researchers. The review identified three major research needs: a comprehensive evaluation of general technology acceptance models in the context of ADAS, development of an acceptance model specifically for ADAS and similar technologies, and development of an acceptance assessment questionnaire. Two studies were conducted to address these needs. In the first study, data collection was done using two approaches: a driving simulator approach and an online survey approach. In both approaches, participants were exposed to an ADAS and, based on their experience, responded to several survey questions to indicate their attitude toward using the ADAS and their perception of its usefulness, usability, reliability, etc. The results of the first study showed the utility of the general technology acceptance theories to model driver acceptance. A Unified Model of Driver Acceptance (UMDA) and two versions (a long version with 21 items and a short version with 13 items) of an acceptance assessment questionnaire were also developed, based on the results of the first study. The second was conducted to validate the findings of first study. The results of the second study found statistical evidence validating UMDA and the two versions of the acceptance assessment questionnaire

    Transformation in development planning frameworks for promotion of sustainable development of agriculture in Bangladesh

    Get PDF
    This research provides a critical investigation of Bangladesh agricultural development planning frameworks in light of principles of sustainable development of agriculture (SDA) with a view to guide the government in finding ways to promote sustainable development in the agriculture sector through planning process. Even though development planning is not a panacea for the promotion of sustainable development at the national level, this process is suggested in many important international consensuses for implementing the internationally agreed agendas at country level. The international consensus on sustainable development as formulated in the United Nations (UN) Sustainable Development Goals (SDGs) also suggest that governments find ways for internalisation of SDGs in governments’ planning processes and synchronise the SDGs with relevant ongoing processes of development. The integrated and universally applicable Sustainable Development Goals (SDGs) incorporate some sustainable agriculture goals that have relevance to the principles agreed in different international forums for promotion of sustainable development. Moreover, sustainable agriculture goals are integrated with other relevant sustainable development goals, such as poverty eradication, elimination of inequality, biodiversity protection, addressing climate change and promotion of governance and citizen participation, right to information and access to justice at country level. These diversified but integrated goals are critical for sustainable development of the agriculture sector. Given that the SDGs are aspirational and seek internalisation at country level through development planning frameworks, this research finds some internationally agreed principles as the basis for internalisation of the goals of sustainable development of agriculture at country level. This policy research examines the appropriateness of Bangladesh development planning frameworks in promoting the SDA in light of seven SDA principles, derived from internationally agreed guidelines on sustainable development in the context of agriculture. These principles provide the basis for reviewing the adequacy of development planning frameworks at national level. Before reviewing the Bangladesh development planning frameworks, the research examines the agricultural development approaches of India that pursues sustainable development of agriculture through its planning frameworks. India has been selected for this purpose because of its similarities with Bangladesh in respect to planning frameworks, legal system and agricultural development approach. The Bangladesh development planning framework is reviewed to identify the gaps and improvements required for the promotion of SDA based on internationally agreed SDA principles and comparative experiences. This research finally recommends transformative proposals for filling the competency gaps in planning frameworks for promotion of SDA in Bangladesh. The promotion of SDA through development planning frameworks in Bangladesh requires an integrated agenda by different agencies, at different levels of the government, in a coordinated way. This change will need political commitment both at national and local level as well as good governance through transparent, participatory and accountability processes. The strong commitment of the government can advance the transformational agendas as has been seen in assistance to subsidies and other safety net programmes in Bangladesh. International cooperation in respect of technological development, capacity building and financing for implementing sustainable development interventions is also critical in promoting the SDA in Bangladesh

    A Laser Ion Source for Thin Film Deposition: Characterization of Source and Growth Conditions

    Get PDF
    Multicharged aluminum and carbon ions are generated by a laser-arc ion source. The design, construction, and testing of a compact laser ion source is demonstrated where the laser plasma is amplified by a high voltage spark-discharge. Optical emission and ion time-of-flight are measured for a spark-coupled laser aluminum plasma. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ~7 ns, pulse energy Ep ≤ 260 mJ, intensity I ≤ 15 × 109 W/cm2) generates the Al plasma, while a synchronized spark-discharge enhances the ion flux and charge state. Time-integrated, spatially resolved optical spectra are used to obtain the plasma excitation temperature Te and density ne. The coupling of 2.4 J of spark-discharge to the laser plasma enhances the optical emission line intensity. The effective ion temperature Ti is calculated from a shifted Maxwell-Boltzmann distribution fit of the time-of-flight signal deconvolved for each ion charge. For I = 3.5 × 109 W/cm2, Ti is ~15 eV. For spark energy of 2.4 J coupled to the laser plasma, Ti increases to ~50 eV, and up to Al8+ is identified from the ion time-of-flight signal. The Ti obtained from the ion time-of-flight is much larger than Te obtained from optical spectroscopy, although the plasma is considered to be in local thermodynamic equilibrium. This result is explained in view of the temporal development of the ablation plume and the different plasma regions probed by the two methods. Multicharged carbon ions are also generated by a different laser-assisted spark-discharge (laser-arc) ion source configuration. A Q-switched Nd:YAG laser pulse (1064 nm, 7 ns, ≤ 4.5 × 109 W/cm2) focused onto the surface of a glassy carbon target results in its ablation. The spark-discharge (~1.2 J energy, ~1 μs duration) is initiated along the direction of the plume propagation between the target surface and a grounded mesh that is parallel to the target surface. Ions emitted from the laser-spark plasma are detected by their time-of-flight using a Faraday cup. The ion energy-to-charge ratio is analyzed by a three-mesh retarding field analyzer. In one set of experiments, the laser plasma is generated by target ablation using a 50 mJ laser pulse. In another set of experiments, ~1.2 J spark-discharge energy is coupled to the expanding plasma to increase the plasma density and temperature that results in the generation of carbon multicharged ions up to C6+. A delay-generator is used to control the time delay between the laser pulse and the thyratron trigger. The highest charge amplification is recorded at ~0.9 μs time delay between the laser pulse and spark-discharge. Ion generation from a laser pulse when a DC high-voltage is applied to the target is compared to that when a spark-discharge with equivalent pulsed voltage is applied to the target. The laser-coupled spark-discharge (7 kV peak voltage, 810 A peak current) increases the maximum detected ion charge state from C4+ to C6+, accompanied by an increase in the ion yield by a factor of ~6 compared to applying 7.0 kV DC voltage to the target. Pulse laser deposition is used to deposit Al thin film on Si substrate. The growth conditions of the Al thin-film are investigated using a femtosecond pump-probe setup. The thermomodulation response from the thin film is measured. The goal is to measure the thin-film heat transfer as well as the thickness of the thin film. A femtosecond (800 nm, 100 fs FWHM, 0.15 nJ/pulse) laser pulse creates acoustic-strain pulse in the Al thin film. The time of flight of the acoustic pulse shows that the echoes of the acoustic pulse reflected from the metal/substrate interface change the optical reflectivity at the film surface. This information can be used to determine the thin-film thickness. The sensitivity of the femtosecond pump-probe setup is in the range of 10-6. On-line thickness measurement of Al thin-film during pulse laser deposition is not successful due to the roughness of the thin film; instead, thermal evaporation on Si substrate is demonstrated by femtosecond optical pump-probe spectroscopy. A femtosecond Ti:sapphire laser pulse (wavelength λ = 800 nm, pulse width τ ∼ 100 fs, pulse energy Ep = 1.25 nJ) is used to instantaneously heat (pump) the surface of Al thin-film that changes the temperature profile of the target surface. The delayed probe pulse, also with λ = 800 nm, is used to investigate the change in transient thermoreflectance ΔR/R in order of 10-6 for the Al thin-film. The thermal expansion creates isotropic thermal stress in the Al surface that generates an acoustic wave of ultrasonic frequency. The travel time of the optically induced strain normal to the surface of the sample is measured to evaluate in-situ thickness measurement of Al in the range of 30 to 450 nm during the film deposition

    Towards long term colloid suspension in a vertically rotated system.

    Get PDF
    Within a colloidal suspension gravity may compromise the observation of governing physical interactions, especially those that are weak and/or take significant time to develop. Conducting the experiment in a long-term microgravity environment is a viable option to negate gravitational effects, though significant resources are required to do so. While it may not be possible to simulate long-term microgravity terrestrially, particles can resist quick sedimentation in a confined suspension system rotating vertically with appropriate rotation speed. The goal of the investigation is to demonstrate the existence of long-term particle suspension regime for a certain colloidal suspension while characterizing colloidal behavior due to hydrodynamic interactions. First, to understand the colloidal suspension in a rotational system, I studied the colloidal behavior in such a system where colloidal particles and underlying surfaces interact to each other hydrodynamically. Therefore, I studied the collective behavior of colloidal particles (4.0 µm PMMA), located near the solid surface in a fluid medium confined in a cylindrical cell (3.0 mm diameter, 0.25 mm height) which was rotated vertically at a low rotational speed (20 rpm). The observed colloidal behavior was then validated through a Stokesian dynamics simulation where the concept of hydrodynamic contact force or lubrication interactions were avoided which is not physically intuitive and mathematically cumbersome. Rather, I adopted hard-sphere like colloidal collision or mobility model. I found that colloidal agglomeration is a function of the applied rotation scheme, either forming colloidal clusters or lanes. While evolving into dynamic structures, colloids also laterally migrate away from the underlying surface. While forming colloidal structures due to hydrodynamic interactions among particles and nearby solid surface, particles migrate away from the surface and eventually redistribute throughout the sample cell. After redistribution, I demonstrated long term colloidal stability within the sample cell. When particles are redistributed with relatively equal spacing and not concentrated near a solid surface, structure formation is minimized and does not evolve any further which can be considered as long-term suspension

    Estimating Carbon Pool and Carbon Release due to Tropical Deforestation Using High-resolution Satellite Data: Carbon Release due to Tropical Deforestation

    Get PDF
    Forest-cover in the tropics is changing rapidly due to indiscriminate removal of timber from many localities. The main focus of the study is to develop an operational tool for monitoring biomass and carbon pool of tropical forest ecosystems. The method was applied to a test site of Bangladesh. The research used Landsat ETM+, Landsat TM and IRS pan images of 2001, 1992 and 1999 respectively. Geometrically corrected Landsat ETM+ imagery was obtained from USGS and adjusted to the field using GPS. Historical images were corrected using image-to-image registration. Atmospheric correction was done by modified dark object subtraction method. Stratified sampling design based on the remote sensing image was applied for assessing the above-ground biomass and carbon content of the study area. Field sampling was done during 2002-2003. Dbh and height of all the trees inside the sample plots were measured. Field measurement was finally converted to carbon content using allometric relations. Three different methods: stratification, regression and k-nearest neighbors were tested for combining remote sensing image information and field-based terrestrial carbon pool. Additional field sampling was conducted during 2003-2004 for testing the accuracy. Finally regression method was selected. The amount of carbon released and sequestrated from the ecosystem was estimated. The application of the developed method would be quite useful for understating the terrestrial carbon dynamics and global climate change

    Welfare State Development in Developing Nations: The Relationship between Organised Labour and International Organisations

    Get PDF
    This article examines welfare state development and welfare programming in the least-developed nations using the frameworks of power resources theory and world society theory. Power resources theory emphasises the role of organised labour in social policy reforms and distributional decisions, while world society theory focuses on the role of international organisations in welfare programming in developing nations. Through a case study focusing on Bangladesh, this article examines the relative importance of labour movement and international organisations in shaping social welfare policies and programmes in developing nations. While the study finds both theories relevant and useful in the context of developing nations, it suggests that international organisations are less likely to compensate for a weak labour movement in promoting labour rights and policy reforms that are friendly to the working class in those nations

    Pseudo value-based Deep Neural Networks for Multi-state Survival Analysis

    Full text link
    Multi-state survival analysis (MSA) uses multi-state models for the analysis of time-to-event data. In medical applications, MSA can provide insights about the complex disease progression in patients. A key challenge in MSA is the accurate subject-specific prediction of multi-state model quantities such as transition probability and state occupation probability in the presence of censoring. Traditional multi-state methods such as Aalen-Johansen (AJ) estimators and Cox-based methods are respectively limited by Markov and proportional hazards assumptions and are infeasible for making subject-specific predictions. Neural ordinary differential equations for MSA relax these assumptions but are computationally expensive and do not directly model the transition probabilities. To address these limitations, we propose a new class of pseudo-value-based deep learning models for multi-state survival analysis, where we show that pseudo values - designed to handle censoring - can be a natural replacement for estimating the multi-state model quantities when derived from a consistent estimator. In particular, we provide an algorithm to derive pseudo values from consistent estimators to directly predict the multi-state survival quantities from the subject's covariates. Empirical results on synthetic and real-world datasets show that our proposed models achieve state-of-the-art results under various censoring settings

    Thermodynamics and critical behaviors of long-range interacting magnetic system using tsallis non-extensive statistics

    Get PDF
    In this paper, we review non-extensive statistics (Tsallis conjecture), and continue by analyzing thermodynamic properties and critical behaviors of systems which follow this statistics. Following that, we present a suitable algorithm in Monte Carlo method (Metropolis algorithm) to simulate spin systems with long-range interactions according to the Hamiltonian of Ising model in Tsallis statistics with suitable boundary conditions. In conclusion, we proceed to analyze thermodynamic properties related to this system and compare obtained results such as magnetization, internal energy, specific heat and magnetic susceptibility to known results in short-range systems in Boltzmann-Gibbs statistics

    Coordinate Bethe ansatz computation for low temperature behavior of a triangular lattice of a spin-1 Heisenberg antiferromagnet

    Get PDF
    We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results
    corecore